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ABSTRACT 

This paper describes a foundational shift for Knowledge Representation and Reasoning (KRR) and its 
potential for Defence and Security applications.  Underpinning research for the approach is introduced 
which shows how techniques from Graph Theory (GT) and Knowledge Engineering (KE) are exploited.  
Graphs and GT are well-established research areas with successful applications in a number of defence 
relevant sectors such as IT and telecommunications.  KE fuses computational linguistics and semantics with 
GT to represent knowledge to reason and infer understanding.  Furthermore, civil sectors (e.g. finance, 
marketing, pharma) are embracing new developments in data sciences (e.g. Artificial Intelligence (AI) and 
Machine Learning (ML)).  Mainly to improve decision making, target services and increase the pace at 
which new solutions can be delivered. There has been some work in Defence in this area e.g. the use of 
ontology to support semantic interoperability; real-time semantic analysis of multi-modal streams (e.g. 
video, images, text, audio, social-media) to identify and track multiple entities of interest, including evolving 
behaviours and relationships. Adding these to the research mix provides an opportunity to expand KRR 
much further.  In particular, how the developments, with machines, can provide the knowledge based 
systems and analytical support needed by Defence for full spectrum operations at pace.  Where, for example, 
interconnection of observations between the physical, social and cyber domains may not be easily 
discernible, nor connections of such observations to past knowledge and staff expertise, past and present. 

The foundational shift is in fact bi-directional understanding of information and knowledge by humans and 
machines with fusion of diverse, heterogeneous sources. Enabling machine reasoning (inferencing) methods, 
which apply rules and formal logic to available data in order to offer higher order deductions. Knowledge 
Representation (KR) is the expression of knowledge in computer-tractable form in order for it to be exploited 
(e.g. reasoning).  Thus, use of terms symbolic AI and rule-based AI by Knowledge based system.  What is 
missing is the (semi)automated fusion or KRR against observations to support the goals of high level fusion. 

In this paper, using analysis of the state-of-the-art, we outline approaches to establish effective KR that can 
be used by future hybrid systems. We argue that symbolic methods are more adept at dealing with sparse 
data, support enhanced explainability, incorporate past human knowledge, and can exploit computational 
methods which excel at pattern recognition and data clustering/classification problems.  Furthermore, such 
approaches/technologies can support future coalition operations (e.g. hybrid warfare), providing the 
coalition can: 

i. develop or adopt domain specific and upper or top-level ontologies and event driven 
architectures; 

ii. assess the inference capabilities, including handling of uncertainty/ambiguity; 
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1. INTRODUCTION 

1.1  Graph Theory 
The common saying ‘a picture paints a thousand words’ recognises the power that visual representation has 
for human perception and understanding.  Enabled by human vision it helps the mind build a rich, active 
representation of the scene, of the identity of entities within it, and the relationships between them.  
Developing machines with this level of competence remains an enduring challenge requiring collaborative 
advances in multiple disciplines such as human psychology, neuroscience, perception, cognition, computer 
science, Machine Learning (ML), statistics, and Artificial Intelligence (AI). 

Graphical representations, that is Graphs, provide an enabling component in that direction.  Many real world, 
or abstract, situations, can be depicted by a diagram consisting of a set of points (entities) together with lines 
joining certain pairs of these points (e.g. a family tree, a road system or a convolutional neural network).  
Mathematical abstraction of situations of this type gives rise to the concept of a graph and development of 
underlying science of graph theory [1].  Formally a general graph G consists of three things, a set VG (called 
the vertex (or node)), a set EG (called an edge (or line)) and an incidence relation (or relationship), a subset 
of VG x EGA, required to be such that an edge incident with either one vertex (a loop) or two vertices [1].  
Because of its broad application, Graph Theory (GT) is well-established area of science, with a strong body 
of knowledge.  Graphs can be used to model types of relations and processes in physical, biological, social 
and information systems [2].  Often where the term Network(s) is used (in its simplest form a collection of 
points (nodes), joined together in pairs by lines (edges)), a graph, in which attributes (e.g. names) are 
associated with the vertices and edges, and their relationship defined postulated to try to understand the 
Network and its dynamics (e.g. communications, information, transport, social systems) [3]. 

Underpinned by GT, the utility of graphs for these application areas has lent it to be extended to address real 
or abstract problems in other areas of network, information and web sciences.  An example is the 
representation of knowledge, as managed by and derived from data and information processing systems, the 
subject of this paper. 

Epistemologically, the definitions of these three terms in italics is beyond the scope of the paper.  This is 
because they are used casually by many researchers, definitions are vague and imprecise - the relationships 
between them, although non-trivial, of intertwined and interrelated concepts are not sufficiently dealt with 
[4].  Therefore, we cast their use in commodity processing systems from an Information Science and 
Technology (S&T) perspective.  Outlined in the next section, where we also address other terms in common 
use such as Knowledge Base (KB), KBased Systems (KBSs) and ontologies.  The aim being to establish the 
basis for Knowledge Graphs (KGs) as they underpin the technical approach to Knowledge Representation 
and Reasoning (KRR), the foundational shift, presented in the sections thereon.  Overall advantages afforded 
to defence analysts, working as a team with machines, such as more effective and efficient analytical support 
and better intelligence products, is summarised in the final sections with conclusions as to the actions needed 
to transition the foundational research towards system implementations. 
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2. DATA, INFORMATION, AND KNOWLEDGE 

2.1  Data and information  
 

A layered view of a processing system offers 
a convenient view of these terms, as shown in 
Figure 1, and is in our opinion commonly 
used. The tapering is not meant to depict the 
importance of one over the other but simply to 
recognise the decreasing scale of the entities 
relative to each other.  Nor does the tapering 
imply uni-directional direction of flow, 
though common, as higher level entities can 
lead to changes to lower level entities.  The 
whole should be in fact be considered as a 
continuum.  Data are the base representation 
of discrete facts, observations, or 
measurements in a form and format that is 
amenable to computational processing by 
systems.  What data or their sets, databases, 
means or conveys that has purpose and 
relevance to a particular query and in a 
particular context is information.  Conversely, or what can be gleaned from knowledge and codified.  Views 
of data and information, with some similarity to these, were expressed by Stenmark [4], and others listed by 
him for discussion in his paper (Figure 2).   Knowledge however, is a much more elusive and abstract 
concept and the term is often used interchangeably with information but the two are not the same, though can 
be similar in some aspects. 

2.1  Knowledge  
Elaborating on the work of Nonaka and 
Takeuchi [5], we argue that knowledge relates 
to the mind, is about beliefs, insights, trust 
and commitments governed by the mental 
model1 held by the beholder.  Knowledge 
creation is a continuous interaction between 
tacit and explicit knowledge: tacit knowledge 
is described as knowledge that is ‘personal, 
context-specific, and therefore hard to 
formalise and communicate’- explicit 
knowledge is described as ‘knowledge that is 
transmittable in formal, systematic language’ 
(e.g. reports, books, media etc.) [5].  It is the 
representation of knowledge in the round such 
that it can be managed, shared and built upon 
which is the challenge.  Moreover, its 
instantiation from the abstract to a form 
                                                      

1 We define as - psychological representation of real, hypothetical, or imaginary situations that is used to anticipate, predict and 
reason events and underlying explanations such as action/consequence 

Figure 1:  Layered system view of 
information related terminology 

Figure 2:  Example of definitions for data, 
information and knowledge 
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amenable for processing codified as data and information.  Hence data, information and knowledge are 
intertwined, interrelated and influence each other.  Both data and information require knowledge in order to 
be interpretable, but at the same time, data and information are useful building blocks for constructing new 
knowledge, such as through learning2.  A better understanding of the overall relationship between the three, 
and how this can be codified, must by definition lead to better representation of knowledge and enable its 
sharing, communication, with others to derive more value3. 

If we consider more than an individual, such representation requires being formal, structured and 
communicable.  Take for example text written by an author.  Within that, the author has used their mental 
model, tried to articulate their thoughts about something based on their knowledge. But the context, concepts 
and meanings being articulated are understood by the author and can, to an extent, be interpretable by the 
reader if they share the same language, vocabulary, including definitions, and some of the contextual 
knowledge needed.  If the information communicated between the two becomes too distant from the 
knowledge required to interpret it, de-conceptualised, then it becomes just data.  

2.2  Ontology 
A formal and structured way of representing the concepts and relations of a shared conceptualisation [6] has  
emerged as the commonly accepted definition of ontology in Information Sciences, as opposed to other 
meanings of ontology used in philosophy or metaphysics4 (see [7]) for a fuller discussion of this).  
Conceptualisation of an area of interest, i.e. domain knowledge, where concepts, other entities, and the 
relationships between them are assumed to exist, needs formal representation if it is to be processed.  
Domain is referred to as the universe of discourse within which objects, and the describable relationships 
among them, are reflected in the representational vocabulary with which KBSs represent knowledge [6].  
This requires the design, development and creation of ontologies for a domain by extracting relevant 
instances of information from KB, ontology population, or through automatic ontology learning [8].  
Ontological representations with their explicit, machine processable semantics are commonly used as KBs in 
AI applications (e.g. in the context of KBSs). The application of an ontology as a KB facilitates validation of 
semantic relationships and derivation of conclusions 
from known facts for inference through reasoning 
[9]. 

With the advent of the internet, the irrepressible 
growth of the web and related technologies (e.g. 
communications, networks and services), has led to 
the continuing and exponential growth in the 
ubiquitous availability of data and information 
(across heterogeneous systems, programming 
languages and network protocols) in most market 
sectors and aspects of knowledge thereof.  But, for 
this to be of value, consistent and formal 
representation is needed of the distributed things, the 
groups of things and relationships between things for 
any area of interest.  The concept of the semantic 
web emerged as a response to this [11]; a web of data 
elements, linked to enable search and discovery and 
online analysis and has continued apace since [10].  
Three key enablers, through standardisation efforts of 
                                                      

2 We define as - the process of changing knowledge and skills 
3 Benefit through sharing understanding of something and through learning 
4 Nature and essence of things, The Chambers Dictionary, 13th Ed. 

Figure 3:  Semantic web stack 
(www.w3.org) 
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the World Wide Web Consortium (W3C) and working groups, have been the Resource Description 
Framework (RDF5), Web Ontology Language (OWL)5, and query languages for RDF such as SPARQL5.  
These are part of the W3C technology stack, with the first being a standardised graph model, the second 
being a logic-based specification language for ontologies building on RDF and the third specifies the syntax 
and semantics of the query language for RDF.  This technology stack, and the supporting tools, has been 
extended much further, with contributions from standardisation bodies (e.g. Open Geospatial Consortium 
(ogc.org), Internet Engineering Task Force (ietf.org)) to provide the foundations for Knowledge Engineering 
at web scale (Figure 3). 

3. KNOWLEDGE GRAPHS 

The origin of the term KG is attributed to a company Google blog post by Singhal6 in 2012.  It stated a 
summary of work “on an intelligent model—in geek-speak, a “graph”—that understands real-world entities 
and their relationships to one another: things, not strings.  The Knowledge Graph enables you to search for 
things, people or places that Google knows about.....and instantly get information that’s relevant to your 
query. This is a critical first step towards building the next generation of search, which taps into the 
collective intelligence of the web and understands the world a bit more like people do”. The overall goal 
being to enhance Google search through three key ways – a) Find the right thing (e.g. disambiguate 
language), b) Get the best summary (e.g. concise content summary and key facts about the particular thing), 
and c) Go deeper and broader (e.g. make unexpected discoveries).  Further developments have led to 
synonymous term to KG, Knowledge Vault, introduced by the company to generate the largest store of 
knowledge by automatically pulling in information from all over the web, using ML to turn the raw data into 
usable pieces of knowledge7. 

Ehrlinger and Woess [12] argue that the terms Knowledge Vault, KB and Ontology are used as synonyms, as 
in the above and as ‘buzzwords’, and attempt to provide a distinction between them and a definition of KG.   
They provide a summary of definitions, listed in Figure 4 below, from other researchers, found with 
references in their paper.  From their critique of these, and usage of terminology in research literature, they 
propose the KG definition as - “a knowledge graph acquires and integrates information into an ontology 
and applies a reasoner to derive new knowledge”.  Arguments in support are that it does not include scale 
(e.g. as implied by knowledge vault) and aligns with the assumption that a KG is superior and more complex 
than a KB or ontology.  Such a definition is sufficient for the purpose of our paper as the distinctions being 
cited need to be analysed epistemologically to carry any significance.  

Figure 4:  Example of definitions of KGs [12] 

• A knowledge graph (i) mainly describes real world entities and their interrelations, organised in a graph, 
(ii) defines possible classes and relations of entities in a schema, (iii) allows for potentially interrelating 
arbitrary entities with each other and (iv) covers various topical domains. 

• Knowledge graphs are large networks of entities, their semantic types, properties, and relationships 
between entities 

• Knowledge graphs could be envisaged as a network of all kind of  things which are relevant to a specific 
domain or to an organization. They are not limited to abstract concepts and relations but can also 
contain instances of things like documents and datasets. 

                                                      
5 https://www.w3.org/2001/sw/wiki/OWL.or..RDF.or..SPARQL 
6 https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html [dl Apr, 2020] 
7 https://www.newscientist.com/article/mg22329832-700-googles-fact-checking-bots-build-vast-knowledge-bank/# [Apr, 2020]  

https://www.w3.org/2001/sw/wiki/OWL
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• Knowledge Graph is an RDF graph 

• Systems exist and use a variety of techniques to extract new knowledge, in the form of facts, from the web. 
These facts are interrelated, and hence, recently this extracted knowledge has been refered to as a 
knowledge graph. 

4. DEFENCE AND SECURITY APPLICATIONS 

4.1 Background 
The core research reported in this paper is from the Dstl Underpinning Data Sciences (UDS) research 
project, under the Information Systems Programme8. This is advancing research in the following key areas of 
which the first four are most pertinent.  a) Development of domain specific ontologies, b) Building effective 
architectures for event driven processing, c) Deployment and assessment of inferencing capabilities, d) 
Handling uncertainty and ambiguity in observations, e) Information sharing and observation provenance, f) 
Approaches for federated deployment and coping with scale, g) Standards and interoperability. Part of the 
research has also been through collaborations with academia, industry and under the NATO Information 
Systems Technology (IST) research collaborative programme of work with coalition partners. Two NATO 
projects of specific mention are NATO-RTG-144, on content based multi-media analytics [14], and recently 
completed exploratory research NATO-ET-111, on KRR [15].  Both providing direction to the work 
reported in this paper. 

Regarding KRR the starting point, as eluded to earlier, is determining the domain and context of application 
supported by defining and designing an ontology that fits purpose.  This is a critical step where so far we 
have essentially commented on static applications.  Whereas those dynamic and temporally varying are more 
typical in general, and representative of defence and security in particular, as addressed in the next sections. 

4.2 Ontologies and approach 
Ontologies are typically constructed by defining classes of things, with relations, functions, data values and 
axioms to constrain their interpretation. These classes are based on common characteristics, and subclasses 
can be seen as specialisms of parent classes in that all individual members of a subclass are also members of 
any parent classes. This leads to a static representation of the truth of some domain represented in the form 
of axioms.  Example shown in Figure 5, an ontology for the planning and deployment of assets, such as 
tanks, in the area of operation.  Define class Tank of which Battletank is a sub-class and then specific NATO 

                                                      
8 https://www.gov.uk/guidance/information-systems-programme [May, 2021] 

Figure 5:  Screen shot of simple defence application of tank deployment 
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battletanks that are sub-classes, such as Challenger (UK), Abrams (USA), Leclerc (FRA), and Leopard 
(DEU).  This ontology not only groups assets by what they physically are, but includes relations to their 
capabilities and potential actions.  Though usable, it is too simple for effective application and fundamentally 
limited to static domains and static representation of domain knowledge; any shift in this knowledge requires 
change to the ontology.  

The fundamental shift in approach needed, in addition to managing dynamic and temporal changes, a critical 
requirement for most applications, is the concept of KG as a means to achieve fusion and understanding in a 
form accessible to both humans and machines.  

4.3 Case study and findings 

The form of KG adopted is an RDF graph underpinned by an explicit specification (i.e. a formal ontology) 
grounded in Description Logic, using components from the W3C semantic web stack (Figure 3) in a layered, 
modular style of semantic architecture. The advantage of this form of KG, compared to other forms, is that it 
can support the kind of explicit, robust semantics described above. Such a layered modular construct serves 
our cases well.  As our focus is on information fusion and semantic interoperability, sensemaking and 
understanding, and prediction using widely available Commercial-off-the-shelf (COTS) and Free and Open 
Source (FOSS) components such as graph databases (also known as triple store) and reasoners wherever 
possible, supported by developing additional components where necessary.  

4.4 Architectural Overview 
Our general approach to architecture therefore, is to exploit the W3C semantic web stack (since it provides 
much of the information framework) and open standards in order to be able to provide interfaces between 
components and make use of any technology that supports relevant open standards.  SPARQL interface, for 
example, with compliant graph databases thus avoiding any proprietary technology. The use of loosely 
coupled APIs enabling rapid development of new components to API specifications using the OpenAPI 
standard avoids brittle architectures.   Employ RDF, sort of schema in other information systems, for data 
interchange as well as to provide content and metadata. All of this structure and content are specified using a 
layered and modular semantic framework comprising ontologies and other vocabularies. 

A core ontology, specified using OWL, to cover all concepts that are stable and common to all use cases and 
domain extensions to provide coverage of more specialist domains (e.g. maritime situational awareness, 
pharmaceutical production, and our recent work on information operations). This is analogous to a Tree 
where the Trunk is the core ontology, and the Branches, the domain extensions.  The Leafs, represented 
using lighter weight semantics in the form of Simple Knowledge Organization System9 (SKOS), as per [16], 
provide specifications of taxonomies, thesauri and other classification schema and structured vocabularies. 

Using the tree analogy makes it clearer why our layered, modular approach has utility.  The trunk, core 
ontology, comprises all of the essential elements to describe any domain of interest. An upper level generic 
ontology, high level conceptually, to describe all entities and relationships in a stable way. Simple, 
lightweight but also rigorous enough to support transformation to other forms of representation as may be 
required (e.g. Basic Formal Ontology (BFO), Semantic Sensor Network (SSN) and the Business Objects 
Reference Ontology (BORO)).  

The domain extensions then provide further elucidation of the concepts from the core ontology but 
remaining conformant to its ontological commitments (i.e. extending the core ontology without needing 
updates to it).  Also enabling addition of new domain extensions, modifications to existing ones without any 
bearing on other domain extensions.  This layer is also expressed as a formal ontology, using OWL, to 
support inference and reasoning, as well as to be able to apply constraints and use closures to restrict the 
                                                      

9 https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html 
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open world model as necessary.  Reference resources then provide additional detail as per standards 
agreements and national doctrines.  Such material perhaps governed by external organisations, and therefore 
subject to ownership, change and less stable. SKOS facilitates dynamic approaches to governance enabling 
users to add new concepts without changing formal ontology.  

Attempting to engineer an ontology of such information would be an enormous effort, requiring significant 
ongoing resource to maintain.  By deliberately not choosing to incorporate such resources into an ontology, 
instead leaving them in the form in which they are maintained, but adding a lightweight semantic layer, it 
becomes possible to simplify governance processes and avoid any requirement for consensus on each and 
every concept.  Each nation and/or organisation can produce structured vocabularies according to their 
needs, these structures can be represented using SKOS and, importantly, the SKOS vocabulary provides 
sufficient semantic relationships to be able to describe how concepts in each structured vocabulary relate to 
one another. Where additional logics are required, to support particular use cases, these SKOS vocabularies 
can be extended using OWL constructs.  

Finally, common to both, the core ontology and domain extensions, are the related principals of modularity 
and the use of Ontology Design Patterns (ODP) [17]. Modularity involves using well defined, reusable 
extant ontologies wherever possible, for example the GeoSPARQL ontology to provide geospatial elements 
and OWL-Time to provide temporal elements. The establishment of patterns allows for similar subgraphs 
within the ontology to share common forms of representation, and thus support consistency across the 
ontology layers.  

4.5 Conceptual Overview 
Within the semantic framework outlined above, a number of conceptual innovations have been developed to 
accommodate the kinds of information routinely found in defence and security contexts. The approach to 
ontology presented here is grounded in the kinds and characteristics of this information to produce a dynamic 
model capable of handling changing and uncertain information within an explicit semantic framework. 
Taking in some developments in computable epistemology emerging from research in KRR.  

The model draws on a number of theoretical constructs. The first is phenomenology, a branch of 
philosophical discourse concerned with the experiential nature of existence through which the production of 
knowledge is seen as incomplete and perspectival and is an approach originating in the Digital Humanities 
[18][19]. Using a phenomenological approach, the production of knowledge is through the description of the 
world in terms of phenomena, experienced, observed, and documented. The central tenet is the concept that 
knowledge is the product of some human action and is a subjective perspective on some reality, a perspective 
that may be partial and uncertain. Crucially, there may be multiple perspectives. The second builds on this, in 
that perspectives of reality are documented through observational activities. Key to this is the conceptual 
SOM/OBP/ABI approach to GEOINT developed by the NGA [20].  Structured observations are collected 
through a process of Structured Observation Management (SOM), with these observations being used to 
generate reporting based around entities or objects in a process of Object Based Production (OBP) to support 
analysis focussed on activities in which these entities participate, i.e. Activity Based Intelligence (ABI). We 
have used these concepts to support the phenomenological approach to intelligence gathering and 
sensemaking. 

These two theoretical constructs form the basis of the model that is called the Phenomenological 
Observation Model (POM). The form of this conceptual model is a formal ontology in which the central 
ontological entity is the Phenomenon i.e. happenings in the real world involving entities of interest about 
which we wish to know. Classes of phenomena are used to describe all things with some spatio-temporal 
extent, for example an Event class represents phenomena with a definable (but not necessarily known) 
spatio-temporal extent in the real world (e.g. the birth of Caesar, the sinking of the Titanic, a police stakeout) 
and which bring about some change in state of some thing. A State represents some temporally bounded 
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phenomena applying to one or more things (e.g. condition states such as colour, weight, length, 
names/identifiers; relationship states such as marriage, employment). Associated with Phenomena are 
structured descriptions of them, referred to as Observations. Together, it is Observations of Phenomena that 
form the major constituents of the core ontology discussed above. This method provides a basic pattern for 
describing things that happen in the world. Indeed, this basic pattern has been shown to be extensible to all 
key requirements, as noted below.  

The treatment of spacetime associated with Phenomena is a good example of how the conceptual model is 
more closely aligned to how humans understand and make sense of the world. The POM is not dependent on 
any absolute positioning system for either space or time, unlike most extant information systems dependent 
on coordinate geometry and/or timestamps to define and describe spatial and temporal units of information. 
Innovations developed through work of W3C and OGC on semantic models of space and time have been 
leveraged in the POM by incorporating published standards from those organisations as modules within the 
POM. The GeoSPARQL ontology [21] is a lightweight ontology concerned with space and place, grounded 
in human geography, which provides relative positioning in addition to absolute positioning in any 
coordinate reference system. Similarly, the Owl-Time ontology [22] is analogous in its construction but 
concerned with time, also providing relative and absolute positioning in supported temporal reference 
system. Both of these referenced ontologies used within the POM allow for descriptions of places or 
temporal intervals about which we know nothing, an essential construct for intelligence information where 
our knowledge is often partial and incomplete. Observations may simply state “…in London” or “…before 
takeoff” from which it may be possible to infer some spatial or temporal bounds, but it is essential to be able 
to define an entity such as “…the terrorist training camp” or “…the hold of the ship” without knowing 
anything more about these places at the time of an observation being produced.  

As noted above, these Observations are inherently subjective assertions about some perceived reality; they 
are explicitly produced by some Agent (a human or machine) and describe Phenomena according to the 
frame of reference of said Agent. By modelling the production of an Observation as an Activity carried out 
by some Agent, the conceptual model is able to handle multiple observations of Phenomena. This uses some 
ontological sleight of hand in that the ontological truth in the KG based on this ontology is transferred from 
the axiom itself (e.g. “the car is red”) to the fact that the axiom was asserted (e.g. “AgentX observed the car 
to be red”); the Observation itself may or may not be true, but that is a different question. In terms of the 
ontological assertion within a KG based on this ontology, there is no conflict or inconsistency and thus all 
assertions remain valid according to the ontology, with the potential for further observations to be made 
regarding observations. This provides a means to be explicit about the nature of observation within the 
model and epistemological concerns. Taking the example of identifying and classifying a feature from aerial 
imagery, it is not the case that the feature observed is of type X, rather it is the case that an Agent (human or 
machine) has asserted that the observed feature is of type X. The axiomatic truth here is that the 
classification has been made rather than the classification itself, which may or may not be true. Whereas 
many ontologies would use a class hierarchy here, with individuals being members of classes, such an 
approach is problematic. The assertion that an individual belongs to a class is a statement of universality 
whereas, in most cases, this is not necessarily true, or is only true within bounds and subject to change. 
Therefore, the POM supports both a) explicit assertion to describe some perceived reality and b) observed 
phenomena being bounded in spacetime rather than being universally true. 

Expanding further on the concept of states and changes of state, the nature of ontological truth becomes more 
apparent. In many conceptual models, characteristics of entities are described using attributes or properties of 
said entities. There are two issues with this. Firstly, this does not account for the temporal nature of many 
characteristics. Secondly, this does not account for the way in which any description of any characteristic is 
not a statement of fact but rather a description of some observed reality, as described above. The colour of a 
thing is a good example of this. Colour is rarely an intrinsic property, but can be changed. Equally, 
assessment of colour is highly subjective and even if measured using a scientific instrument such as a 
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colorimeter, it is only true that the measured value(s) are an assertion of an approximation of the true value. 
Indeed, all measurements can be seen as a specialism of observation where some approximation of some true 
state is produced, constrained by the accuracy and precision of the mode of measurement. Length is another 
good example of this; it is undoubtedly true that a physical object has a length dimension in the real world, 
but any measurement of this is constrained by the process of measurement and must be presented according 
to the levels of accuracy and precision afforded by the measurement process. Furthermore, the length of an 
object is not an intrinsic property of the object but it is a state subject to change, for example due to 
environmental conditions.  

Regarding changes of state, the general principal holds that an event may change a state or states of things. 
Events are therefore central to the dynamism of the model. Taking the example of Production, the 
Production pattern is a specialism of a more generic Creation pattern in which some Event changes the 
existential state of some thing; In a creation Event, some thing comes into existence by some means, 
natural or anthropogenic whilst in a Production event, a specialism of the Event class (ie subclass) some 
Agent is actively involved in this activity. So we can describe the act of producing an Observation 
(through an Observation Event) or Measurement (through a Measurement Event) using exactly the same 
design pattern as the manufacture of a car, invention of a mechanism or conceptualisation of a design.  

This event driven approach to the ontology underpins the POM. In the core ontology, Observations 
describe interrelated spatio-temporal things (Phenomena), which is very much aligned to the principles 
embodied in ABI; as with ABI, it is events, activities and other happenings that are very much the focus. 
Furthermore, the application of logical reasoning to the Description Logic based model can be further 
extended to take advantage of other 
forms of logical and statistical 
inference and reasoning.  For example, 
ongoing work to investigate causal 
inference and forms of Statistical 
Relational Learning (SRL) applied to 
the sequences of phenomena, alongside 
Bayesian methods, such forms of 
analysis can be seen to align closely 
with event-driven models. Work has 
already been undertaken to investigate 
how POM-like models can be 
transformed into vector representations 
to further facilitate ML based inference 
and reasoning [26].  The concept of 
Agent discussed previously is also 
important in this regard; as with the 
Fried Of A Friend (FOAF) project  
specification of Agent [27], any such 
machine based inference engine or 
reasoner is treated within the POM as 
an Agent. Therefore capable of making 
Observations, with the result that the 
outputs of any such algorithm or 
system become part of the knowledge 
encapsulated in the KG as further 
Observations based on Observations, 
leveraging the W3C Provenance Ontology [28] .  

Figure 6: a schematic view of part of the Knowledge 
Graph based on an early version of the POM. This 

shows two Observations of States of an object which 
are then used as argument nodes as part of a 

hypothesis which can then be evaluated, in this case 
to determine which of the two perceived realities is 

more likely 
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Note also further work undertaken on the way in which Observations may be generated as the product of 
some hypothesis. This approach leverages the Observation pattern to be applied to the products of indirect, 
as well as direct, observation. To achieve this, the KG underpinned by the POM ontology is aligned to a 
separate graph based on the Argument Interchange Format ontology (AIF) used to describe individual 
hypotheses and understandings in terms of arguments based on evidence (Figure 6).  

The articulation between the observational ontology and the argumentation ontology allows Observation 
nodes on the former KG to be used as Evidence nodes in the latter KG (Figure 7). This articulation makes 
use of the way in which the AIF ontology already supports disambiguation between events and locution 
events [28]. The use of Description Logic based ontologies across both models supports reasoning to assist 

with inference [29], search and discovery [30], and hypothesis generation, evaluation and explanation [32].  

4.6 Use Case: Maritime Situational Awareness 
The architecture and conceptual framework described above has, to date, been applied to two domains 
covering three use cases with a further domain in progress. Selected to be diverse and show the efficacy of 
the approach and not be restricted to particular kinds of information or problem, but can be generalised. 
Maritime situational awareness use case is summarise below as an example.  

The first stage of work was to develop the core ontology based on prior experimentation.  An activity we 
called OPIS (meaning “description” in Polish) and helped build enough of the core ontology to support the 
kinds of entities and phenomena needed to describe observations of phenomena [24].  Similarly, the domain 
ontology and reference components were built to provide sufficient vocabulary to describe the kinds of 
behaviours exhibited by ships engaged in fishing in the English Channel.  

Figure 7:  Part of the articulation between the AIF ontology and an event driven 
ontology, showing how an event and an event which produces an observation 

describing said event are represented, derived from a Covid-19 pandemic example. 
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The data used were derived from 
Automatic Identification System 
(AIS) data, available commercially. 
This is by its nature is very simple in 
form, with observations of position 
being the primary set of observations 
generated. From this, a reasoner based 
on Versatile Event Logic (VEL) [23] 
was used to infer higher order kinds of 
movement and these were then used 
to infer the presence of behaviours of 
interest, for example trawling 
activities (Figure 8).  

A related piece of work explored how 
an OPIS-like KG might be populated 
automatically, using the ontology to 
support fusion of information from 
different sources [25]. This piece of 
work, called EVELLO (“to pluck” in 
latin), focussed on how to extract 
semantic descriptions of events to 
populate a KG; the concept of 
Semantic Event Extraction can be 
seen as a subset of the broader topic of Automated Content Extraction and the EVELLO demonstrator made 
use of Natural Language Processing (NLP) and Image Feature Extraction (IFE) as part of the ensemble 
processor (Figure 9).  This has fused textual information with information extracted from video feeds to 
produce an observation describing events where ships interacted in the vicinity of a harbour.  

Another piece of work investigated how vector based methods can be used to analyse KGs with POM like 
structures. This work we  called VECTOR and, working with an early version of the OPIS ontologies and 
KGs,it  explored how methods for embedding rich semantic graphs into vector space can support vector 
based methods, for example to undertake subgraph pattern matching [26].  

Together, these pieces of work investigated the three main subjects of interest with respect to the use of KGs 
for defence. Firstly, how to develop forms of ontology which can best support fusion understanding and 
prediction. Secondly, how to populate KGs based on these forms of ontology. Thirdly, accepting the need to 
be able to transform knowledge into forms suitable for different forms of analysis, how can forms of 
knowledge representation support novel approaches to inference and reasoning.  

5. CONCLUSIONS AND RECOMMENDATIONS 

If we are to achieve effective Human Machine Teams (HMTs) and teaming, and be able to support future 
generations of AI, it is vital that the forms of KR developed are semantically robust, unambiguous and can 
support the sharing of information without loss of meaning. The need for semantic clarity is particularly 
important and while the ultimate aim is arguably for machines to be able to learn context and be able to 
apply this knowledge, this is currently not possible so there is a need for forms of KR to be able to provide 
semantic ‘glue’.   

Figure 8: trawling events (shown in blue) inferred 
from AIS data (shown in orange) using a 
Knowledge Graph based on the OPIS ontology. 
These events were identified using logical 
reasoning given a set of characteristics describing 
trawling behaviour (ie a pattern) expressed using 
Versatile Event Logic. 
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This paper has described a foundational approach for KRR and its potential application to defence and 
security operations, such as in hybrid warfare.  It builds on underpinning research from GT, KGs, web/data 
sciences, AI and ML towards the development of a KRR architectural framework.  The overall purpose, and 
the foundational shift, being the bi-directional understanding of information and knowledge by humans and 
machines and fusion, including as teams.  To provide semantic clarity, KGs are developed that are 
semantically robust, unambiguous and can support the sharing of information without loss of meaning.  As a 
result to overall develop the building blocks for the (semi)automated fusion or KRR against observations, 
from multiple sources and across organisational boundaries, to support the goals of high-level fusion, at scale 
and at pace.   

A foundational step towards this has been the design of a layered, modular semantic framework and its key 
components, along with example of exploratory ‘use cases’ outlined in the paper.  The components detailed 
include core ontologies, to cover all concepts that are stable and common to all use cases, and domain 
extensions, to provide coverage of more specialist domains with further refinements as needed (i.e. the trunk, 
branches and leaves respectively of a tree, analogy described earlier).  Some other conceptual innovations 
added include Structured Observation Management, observations used to generate reporting based around 
entities or objects in a process of Object Based Production to support analysis focussed on activities in which 
these entities participate, such as Activity Based Intelligence.  All these were captured within the 
Phenomenological Observation Model (POM) we developed.  A conceptual model, formal ontology, to 
address domain dynamics and spatio-temporal phenomena, real world events/happenings involving entities 
of interest.  A model more closely aligned to how humans understand and make sense of the world and 
hence more amenable to human machine interactions and teaming. 

Figure 9:  the EVELLO architecture used for Semantic Event Extraction, an example of a self-
contained, orchestrated suite of fusion and reasoning tools behaving as an Agent capable of 

populating a POM based KG 
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Use case examples from maritime situational awareness, pharmaceutical production, and early work on 
information operations; show our approach to be on the right track.  Some important limitations uncovered 
so far that need to be addressed include: 

1. Socio-technical issues:- development and implementation of the framework and components: 

• Despite hiding computational complexity, the approach requires Suitably Qualified and 
Experienced Personnel (SQEP) in web/data sciences that is limited in Defence and 
defence suppliers 

2. Information system issues: 

• Information sharing and assurance across domains and organisations (e.g. intellectual 
property, bespoke developments, different security policies etc.) 

• Federation, scaling, storage and performance of distributed systems within organisations 
as well as across organisations (coalitions) 

3. Science and technology (S&T) issues: 

• Three specific technical areas require much further research and deliberations – Causality, 
Uncertainty and Argumentation.  The first is needed to extract the causal links – the 
actual DNA of a phenomena, the second to manage quantitative analysis of 
qualitative/subjective information and assertions, and the third that we can implement 
logic in support of optimisation of choices in our decision making processes  

In summary, we have shown development of a layered, modular semantic framework for defence analysts as 
an enabler for integration of heterogeneous observations to support Situational Awareness (SA) and 
Situational Understanding (SU).  In particular, SA and SU across an entire operation, enabling more 
effective HMTs at all levels of command and in multi-national coalition operations (e.g. hybrid warfare).  
Such a framework can support the coalition to: 

i. develop domain specific ontologies and event driven architectures 

ii. assess the inference capabilities, including, in future, handling of uncertainty/ambiguity 
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